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A Circuit Model of a System of VLSI
Interconnects for Time Response

Computation
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Abstract —A new computational model based on the spectral-domain
approach for the characterization of a dispersive msdticonductor system
is developed for time response computation. The model consists of two
identical impedance networks and equivalent voltage-controlled voltage
sources and it is particularly suitable for timing analysis. Since full-wave

analysis is employed for the derivation, the computational model is valid

at very high frequencies when the longitudinal field components are no
longer negligible.

I. INTRODUCTION

N UMERICAL characterization and modeling of multi-
conductor transmission line systems have been the sub-

ject of extensive study for many years. Among the methods
commonly employed, the most preferred and prominently
used is the spectral-domain approach (SDA), which was first
applied to the computation of slotline dispersion characteris-
tics [1] and microstrip characteristics [2] by Itoh and Mittra.
Numerous publications followed with a variety of fundamen-
tal applications and modifications [3]. However, few have
utilized the results obtained from these full-wave analyses to
develop suitable computational models for transient analysis
of VLSI interconnects terminated in nonlinear circuits. Most
transient analyses are still based on the static per-unit-length
parameters of the multiconductor systems. Such a characteri-
zation is geared toward TEM approximation, and the accu-
racy of the approximation decreases with increasing frequen-
cies. In this paper, we introduce a new computational model
based on full-wave analysis which takes into account all
possible field components and satisfies all the required
boundary conditions in the structure to characterize a disper-
sive multiconductor system. Moreover, the model is particu-
larly suitable for circuit simulation.

II. SCATTERING MATRIX OF A

MULTICONDUCTOR SYSTEM

We are given a multiconductor microstrip system embed-
ded in an inhomogeneous dielectric medium as shown in Fig.
1. The system is enclosed in a conductor box of width 2a and
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height hl + hz + k~ + hx. Following an approach similar to
that taken by Jansen [4], we first expand the electromagnetic
fields into longitudinal-section electric (LSE) and longitudi-
nal-section magnetic (LSM) fields. Let O(X, y ) and IP(x, y)
be the scalar potentials corresponding to LSE and LSM
fields respectively. They can be written, for each dielectric
region shown in Fig. 1, as

@l= ~A. Si(kX.x)sin[kY.l(y +hl+hz)]
n

~1 = zB. Ci(kxnx)cos[kY.l(y + hl +hz)]
n

CD, = ~{C. sin[kYnz(y +hz)]
n

+ DncOS [kyn2(y ‘h2).

W2 = ~ {E. sin [k,nz(y + hz.
n

}Si(kX.x)

1

+ F.cos [kYn2(y +hz)]}ci(k~.~)

+ z-incos[ky.Jy –hJ]}si(k,.x)

V3 = E{l. sin[k,.s(y - hs)]
n

+ Lncos[kY.~(y – hs)]}ci(k..x)

@,= ~0,, Si(kxnx) sin [k,.,(y -hs-hd)]
n

IPl= ~P,, Ci(kx,,x)cos [k,.q(y –hs–hq)] (1)
n
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where

Si(x)=
{

sin(x)

Cos(x)

Ci(x) =
(

Cos(x)
(2)

sin(x)

{
kxn = (2n – l)m/2a

(n-1) ~/a

and

kYni = U2eip + y2 – k;. ,

(3)

(4)

In (2)–(4), the upper terms refer to the even modes (mag-
netic wall in the plane of symmetry x = O) and the lower
terms to the odd modes (electric wall at x = O). Notice that
the boundary conditions at x = + a, y = h~ + hb, and y =
– h, – h~ are automatically satisfied.

By matching the boundary conditions to eliminate all
unknown coefficients in (l), we find a set of algebraic equa-
tions relating the spectral-domain electric fields to the cur-
rent distribution:

Here ZXX~, etc., are spectral-domain Green’s functions. With
proper normalization, they can be made real functions for
lossless dielectric media and complex for 10SSYmedia.

The unknown current distribution functions JXn and Jz~
are expanded in terms of known basis functions J~# and J#~:

NM

NM

p=lq=l ‘“

where Cpg and dPq are unknown coefficients, N is the
number of terms needed in the expansion, and M is the
number of striplines in the system. The basis functions

JiWxn) and J<S(kX.) are the spectral’domain counterparts
of the spatial-domain basis functions j~~(x) and j~~(x),
which must be chosen LOapproximate the true but unknown
current distributions, Increasing the number of coefficients
in (6) supplies an audit of the accuracy. It is obvious that we
do not wish to have more basis elements than are strictlv
necessary because keeping N small, in consonance with
accuracy, is a desirable objective. The basis functions chosen
are

+’

1’
Fig: 1. Cross section of a typical multiconductor system.

By applying Galerkin’s method in the spectral domain, a
set of homogeneous equations can be derived:

[A(y,@)][c]=o (9)

where A(-y, o) is a (2N X M)x (2N x &f) matrix, and
c=[cPqdPq]p, where p= l””” Nandq=l. ”” M,isa2NX
M column vector which contains the unknown basis function
coefficients.

In order to have nontrivial solutions of the unknown
coefficients in (9), we must have

det[A(y, ti)]=O. (10)
Equation (10) is solved for the propagation constant y for
each frequency. The dispersion characteristics are thus com-
puted. The first M roots found from (9), [M/2] roots for
the even mode and 1M/2j zeros for the odd mode, con-
tribute to the M dominant modes in an M-line system.
Throughout this paper, we assume that these are the only
modal waves propagating.

Once the value of y for each dominant mode is obtained,
the solution for the coefficients can be found, up to a
constant, by the least mean squares method.’ Without loss of
generality, we set Cll = 1, and the following equations are to
be solved by singular value decomposition [9]: ~

!’”
/4,2 A,~ “ o A1,2N&f

: II]

C12

A 22 An “ . A2,~~~ .
. .

CNM

., d 11

. .

A2~M,2 A2~~,3 ~ “ A2N~,2NM dNM

All

I]
A ;1

—— — . (11)

A2N~,1
—

jg:=/sin[PT2(x~~q) ](l-[2(x~x)-1~)”2,X,,<x<x,,+w, (7)

:f=~+~2(xixq)l/H2(xr-l’2‘lS;:<X{+W‘8)
o, elsewhere,
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Fig. 2. N-conductor system with mode i excitation.
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in which

/i. = [A;OA;O “ ‘ “ A~o]T

is the modal incident wave amplitude vector at the output
port, and

is the modal reflected wave amplitude vector at the input
port. The subscript 1 in the above denotes the input port,
and O represents the output port. The modal scattering
matrix of the wave structure is

[1[BI o’ 1[1diag(ey’~) AI

BO = diag(ey~) o AO “
(16)

Now let us consider an arbitrary incident wave al =
[U+a; . . . a#]T applied to the input port of the multiconduc-
tor system. This wave can be expressed as a linear combina-

Now that the mode i propagation constant yi, and the
coefficients Cij and dij, j = 1,” “ “, N, are known, we have a
complete description for each propagating modal wave. In
order to characterize these dominant modal waves, we define
the relative current amplitudes on the striplines for each
mode to be the current eigen-amplitude vector Ml:

f’kfi=[l mzi... m~i]~ (12)

in which mki denotes the mode i longitudinal current ampli-
tude on line k normalized to the mode i current amplitude
on line 1. The amplitude mki is computed by

;/
“ + ‘kd,,j~~(x) &

j=lJX~

mki = ~ (13)

E[ ““ + “dl,j~~(x) al
j=l JX, -

Denote the mode i incident wave at the input port by
A1l=[A:lA;l o~cA~]T, in which A~I represents the mode i
incident wave amplitude on line k. The corresponding re-
flected wave at the input port is Bil = [B~lB~ . “ . B,~]T.
Similarly, Aio and B,. are the model incident and reflected
wave amplitudes respectively, at the output port (see Fig. 2).
By definition we have

Ai, = A;,ikli Aio = A~{lM,

Bij = B:lM, B,<l = B;<llfl . (14)

If the structure is infinitely long, we can write

‘o=~’” “’ e-y’lA

(15a)

‘=~y” ““ e-y’lA

(15b)

-- ,0

— tion of the dominant modal waves by the following equation:
~NiO

al = A~lM1 + A~1M2 + . . “ + A~lM~. (17)

Define the modal eigenvector matrix M to be

M=[M1M2... MN]. (18)

We have, in matrix form,

a1=M41. (19a)

The corresponding reflected wave at the input port bl is

given by

b[ = MB1. (19b)

For the output port, by the same token, we have

ao=iVL40 (20a)

b.= MBO. (20b)

Substitute (19) and (20) into (15):

[Hbl o
][ 1

~e-rL~-l al

b. = Me-rL~-l
o

a. (21)

–r’ = diag(e–~f ’), 1’= 1,2,”0
where e ., N, is the modal prop-
agation matrix. We have thus derived the scattering matrix of
the N-conductor system. One should keep in mind that for a
dispersive multiconductor system, both the propagation ma-
trix e-” and the eigenvector matrix M are frequency de-
pendent. In general, off-diagonal terms in submatrix
Me – “M- 1 are nonzero, accounting for the couplings be-
tween the lines.

III. VOLTAGE-BASED COMPUTATIONAL MODEL

In order to compute the transient response of a multicon-
ductor system terminated in linear and/or nonlinear loads,
we need to find the relationship between the terminal volt-
ages and currents of the system. Modal characteristic
impedances are used to relate line voltages to line currents
for a given mode. Unfortunately, because of the non-TEM
nature of the multiconductor structure, the definition for the
modal characteristic impedance is not unique. In this paper,
we calculate characteristic impedances based on total power
transported along the striplines. For a given dominant mode
i, the complex power transported on an infinitely long line j
is

P,j = //(Eij X H,~) . .2dtdy = ~](EXijH$J – EYijH$j) ~dy

(22)
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where Eij and Hij are fields generated by the mode i
current on line j. From the current-voltage description of
the same system we have

Pjj = ~jliy = zijzijIi~ . (23)

In the above equation, ~j and Ilj are the mode i terminal
voltage and current on hne j. Combining (22) and (23), we
get

jf( Eij X Hi~) “ idzdy

Zij =
Izijlz “

(24)

The current Zij can be calculated by a one-dimensional
integration over the mode i longitudinal current distribution
on line j.

Now let us proceed to define the terminal voltage and
current vectors. If we relate the mode i input port terminal
currents Iil to the incident and reflected waves, i.e.,

then the input port terminal voltages for mode i are given by

(26)

The total terminal currents and voltages at the input port are

N

Z1=~Iil =M(A1– B1)=al-bl (27)
i=l

N

V= ~ J+= Zm(A, + B]) = ZmM-l(aI + b,) (28)
i=l

Similarly, for the output port

Io=ao–bo (30)

Vo=ZmM-l(ao+bo), (31)

A system characteristic impedance matrix can be defined as

Zc = Z~M-l. (32)

Eliminating the wave terms (al, bl, etc.) from the above, we
have a description of the multiconductor system in terms of
line voltages and currents:

~ – ZCI1 = Zme-rLZ; l(Vc)+ ZCI()) (33a)

Vo– 2,]. = Zme-rLZ;’(V, + Zcl,). (33b)

It is immediately noticed that voltages and currents at the
input port depend completely on the output voltages and
currents, and vice versa. Let the voltage transmission matrix
be

I !

Fig. 3. Voltage-based computational model.

Fig. 4. A three-conductor structure: w = h = 60 mm, s = 10 mm, and
L = 30.48 cm.

and define

u,= ou(v~ + zcI~) (35a)

uo=@u(fi + Zczl). (35b)

Equations (33) then become

v,= ZCI[ + u~ (36a)

V.= ZCIO + u{). (36b)

Here U1 and U{] can be viewed as equivalent dependent
voltage sources. After suitable manipulations, we eliminate
the current terms and get

u,= @u(2vo – U()) (37a)

Cl. = @u(2v, – u,). (37b)

Equations (36) and (37), together with (34), represent our
voltage-based frequency-domain computational model for the
dispersive multiconductor system. The schematic model is
shown in Fig. 3. It consists of two identical impedance
networks ZC combined with the voltage-controlled voltage
sources U, and C/(}. It should be emphasized that the system
is modeled completely in the frequency domain; thus all
pamrneters characterizing the multiconductor systems can be
frequency dependent. As pointed out earlier, the terminal
voltages at one end of the multiconductor system are com-
puted from the voltages at the other end. By defining the
equivalent voltage sources, we can greatly simplify the tran-
sient analysis of such multiconductor systems terminated in
nonlinear loads [71, [8].
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Fig. 5. Three-conductor system terminated in linear loads.
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Fig. 6. TEM behavior of structure 5 at low frequencies.

IV. SIGNAL PROPAGATION ALONG A MULTICONDUCTOR

SYSTEM TERMINATED IN LINEAR LOADS

The three-line microstrip structure shown in Fig. 4 is used

to study pulse propagation along the lines. The purpose of
this study is twofold. One, with a step excitation of slow rise
time. we can verifv the correctness of the full-wave models
derived in this sec~ion by comparing results with those of the
TEM model at low frequency. And, two, with a fast pulse
input, we want to examine the non-TEM behavior at high
frequency. The particular structure is chosen for the avail-
ability of both the TEM per-unit-length capacitance matrices
and the uhysical stritiine structure so that comparisons can
be made: Lines are ;erminated with resistors a; both input

port and output port. A step excitation of 100 ns rise time is
applied to line 1 (see Fig. 5), The per-unit-length capacitance
matrices with and without the existence of the dielectric
layer are [5]

[

1.0413 –0.3432

1

–0.0140 ‘
C = – 0.3432 1.1987 – 0.3432 pF/cm (38)

–0.0140 – 0.3432 1.0413

[

0.3516 –0.1482 –0.0127
~= –0.1482 0.4293 1–.-o.1482 pF/cm. (39)

– 0.0127 –0.1482 0.3516

(a)

(b)

Fig. 7. Non-TEM behavior of structure 5 at high frequencies.

..............
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Fig. 8. (a) Three-cnrrductor system terminated in CMOS inverters. (b)
Vnltage response of circuit in Fig. 8(a).
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Since terminations are linear, the responding waveforms can
be calculated in the frequency domain and then transformed
to the time domain by the Fourier transform. The output

signals computed by using our model and the TEM model in

[5] are plotted in Fig. 6. One can see the nearly identical
results, as expected. Notice that a closed structure is used to
approximate the actual structure in the full-wave analysis.
We then proceed to excite the system with a 5 ns pulse
signal. Fig. 7 shows the comparative results of TEM and
full-wave models. The non-TEM behavior can be easily iden-
tified. In particular, couplings between lines are increased
significantly because of the dispersion.

We have proposed and implemented a hierarchical bileuel

waueform relaxation algorithm for the computation of the

transient response of such multiconductor systems termi-

nated in nonlinear loads based on the model proposed here,

and the computational algorithm is given in separate publica-

tions [7], [8]. An example is included here for completeness.

Fig. 8(a) shows a three-conductor system terminated in

CMOS inverters. The first and third lines are driven by pulse

input and the middle line is connected to ground through the

inverters. Fig. 8(b) plots the voltage response of the system.

The logic error caused by coupling and reflection of the

interconnects can be easily seen.

V. CONCLUSION

We have developed a computational model for a disper-

sive multiconductor system suitable for transient circuit anal-

ysis. Since the model is constructed based on full-wave

analysis, the hybrid nature of the VLSI interconnects is

taken care of, and thus the model is valid at high frequen-

cies. Signal distortions due to the dispersive nature of a

multiconductor system have been demonstrated by an exam-

pie. The model is particularly suitable for the transient

analysis of a multiconductor system terminated in external

circuitry, especially for nonlinear terminations.
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